HPC Hardware Overview

Karl W. Schulz

Texas Advanced Computing Center The University of Texas at Austin

UT/Portugal Summer Institute Training Coimbra, Portugal July 14, 2008

TEXAS ADVANCED COMPUTING CENTER

Summer Institute Outline

- 10:30 11am: Welcome & Introductions
- 11:00 12pm: Introduction to Parallel Computing
- 12:00 13:00: HPC Systems Overview
- 13:00 14:30: Lunch

- 14:30 16:00: Introduction to MPI Programming
 16:00 16:30 Break
 16:30 17:30 TACC HPC Systems User Environment
- 17:30 18:30 Lab login exercises

- 09:00 10:30 Advanced MPI
- 10:30 11:00: Break
- 11:00 12:00: Performance Optimization
- 12:00 13:00: Lab exercises
- 13:00 14:30: Lunch
- 14:30 16:00 Introduction to Scientific Visualization
- 16:00 16:30 Break
- 16:30 17:30 TACC Visualization Systems
- 17:30 18:30 Lab exercises

Summer Institute Outline

- Wednesday
- 09:00 10:30: Programming with OpenMP
- 10:30 11:00: Break
- 11:00 12:00: High Throughput Computing
- 12:00 13:00: Lab exercises
- 13:00 14:30: Lunch
 14:30 16:00 Portuguese research presentations
- 16:00 16:30 Break
- 16:30 18:30 Portuguese research presentations
- Thursday
- 09:00 10:30: Scalability Optimization & Parallel Libraries
- 10:30 11:00: Break
- 11:00 12:00: Debugging Parallel Applications
- 12:00 13:00: Lab exercises13:00 14:30: Lunch
- 14:30 16:00 Advanced Visualization Techniques
- 16:00 16:30 Break
- 16:30 17:30 Advanced Visualization Techniques
- 17:30 18:30 Lab exercises

Outline

- TACC's Lonestar System
 - Dell blade-based system
 - InfiniBand (1st generation)
 - Intel Processors
- TACC's Ranger System
 - Sun blade-based system
 - InfiniBand (2nd generation)
 - AMD Processors

General Preliminary Comments

- We are going to discuss hardware and user environments in the context of systems at TACC, but the ideas are of general applicability for a number of HPC systems
- As an application programmer, you may not care about the nuts and bolts of processors/interconnect design
 - we feel your pain ⊚, but we have to think about it slightly to maximize performance
 - we'll try to point out the main relevant architecture bits to keep in the back of your mind
- Please feel free to ask questions we generally don't bite

•We provide PDF from each talk for distribution to those who are interested at the end of the day/week

Lonestar Cluster Overview

Outline

- Lonestar Cluster
 - Configuration & Diagram
 - Server Blades
- Dell PowerEdge 1955 Blade (Intel Dual-Core) Server Nodes
- 64-bit Technology
- Microprocessor Architecture Features
 - Instruction Pipeline
 - Speeds and Feeds
 - Block Diagram
- Node Interconnect
 - Hierarchy
 - InfiniBand Switch and Adapters
 - Performance

Lonestar Cluster Overview

Hardware	Components	Characteristics
Compute Nodes Dell 1955	1,300 Nodes 5,200 Cores	2.66 GHz 4MB/Cache 8GB Mem/node
WORK File System I/O Nodes Dell 2850	24 I/O Nodes Lustre File System	100 TB
Login	1 login: lonestar	2.66 GHz, 16GB Mem
Development	20 Nodes (dev. queue)	2.66 GHz, 8GB/node
Interconnect (MPI) InfiniBand (TopSpin)	24-port leafs 96-port cores	1GB/sec P-2-P Fat Tree Topology
Ethernet (GigE)		128 MB/sec P-2-P Fat Tree Topology

Intel Core µArchitecture Features

- Intel Core Microarchitecture (Dual-Core MultiProcessing)
- L1 Instruction Cache
- 14 Segment Instruction Pipeline
- Out-of-Order execution engine (Register Renaming)
- Double-pumped Arithmetic Logic Unit (2 Int Ops/CP)
- Low Latency Caches (L1 access in 3 CP, HW Prefetch)
- Hardware Prefetch (within a single page)
- SSE2/3/4 [Streaming SIMD Extension 2/3/4] (4 FLOPs/CP)

HPC Hardware Overview

Ranger: AMD Quad-core System

TEXAS ADVANCED COMPUTING CENTER

Ranger: Introduction

- Ranger is a unique instrument for computational scientific research housed at TACC's new machine room
- Results from over 2 ½ years of initial planning and deployment efforts
- Funded by the National Science Foundation as part of a unique program to reinvigorate High Performance Computing in the United States (Office of Cyberinfrastructure)

ranger.tacc.utexas.edu

How Much Did it Cost and Who's Involved?

- TACC selected for very first NSF 'Track2' HPC system
 - \$30M system acquisition
 - Sun Microsystems is the vendor
 - Very Large InfiniBand Installation
 - ~4100 endpoint hosts
 - >1350 MT47396 switches

 TACC, ICES, Cornell Theory Center, Arizona State HPCI are teamed to operate/support the system four 4 years (\$29M)

Ranger: Performance

- Ranger debuted at #4 on the Top 500 list
- Lonestar debuted at #12 (currently ranked #38)

- QS22/LS21 Cluster,
- PowerXCell 8i 3.2 Ghz / Opteron DC 1.8 GHz, Voltaire Infiniband
- BlueGene/L eServer Blue Gene Solution
- Blue Gene/P Solution
- Ranger SunBlade x6420, Opteron Quad 2Ghz, Infiniband
- Jaguar Cray XT4 QuadCore 2.1 GHz

Ranger Hardware Summary

- Compute power 579 Teraflops
 - 3,936 Sun four-socket blades
 - 15,744 AMD "Barcelona" processors
 - Quad-core, four flops/cycle (dual pipelines)
- · Memory 123 Terabytes
 - 2 GB/core, 32 GB/node
 - ~20 GB/sec memory B/W per node
- · Disk subsystem 1.7 Petabytes
 - 72 Sun x4500 "Thumper" I/O servers, 24TB each
 - 40 GB/sec total aggregate I/O bandwidth
 - 1 PB raw capacity in largest filesystem
- Interconnect 10 Gbps /1.6 2.9 μsec latency
 - Sun InfiniBand-based switches (2), up to 3456 4x ports each
 - Full non-blocking 7-stage Clos fabric
 - Mellanox ConnectX InfiniBand (second generation)

Ranger Hardware Summary (cont.)

- 25 Management servers Sun 4-socket x4600s
 - 4 Login servers, quad-core processors
 - 1 Rocks master, contains software stack for nodes
 - 2 SGE servers, primary batch server and backup
 - 2 Sun Connection Management servers, monitors hardware
 - 2 InfiniBand Subnet Managers, primary and backup
 - 6 Lustre Meta-Data Servers, enabled with failover
 - 4 Archive data-movers, move data to tape library
 - 4 GridFTP servers, external multi-stream transfer
- · Ethernet Networking 10Gbps Connectivity
 - Two external 10GigE networks: TeraGrid, NLR
 - 10GigE fabric for login, data-mover and GridFTP nodes, integrated into existing TACC network infrastructure
 - Force10 S2410P and E1200 switches

InfiniBand Cabling for Ranger

- Sun switch design with reduced cable count, manageable, but still a challenge to cable
 - 1312 InfiniBand 12x to 12x cables
 - 78 InfiniBand 12x to three 4x splitter cables
 - Cable lengths range from 7-16m, average 11m
- 9.3 miles of InfiniBand cable total (15.4)

Ranger Space, Power and Cooling

- System Power: 3.0 MW total
- System: 2.4 MW
 - ~90 racks, in 6 row arrangement
 - ~100 in-row cooling units
 - ~4000 ft² total footprint
- Cooling: ~0.6 MW
 - In-row units fed by three 400-ton chillers
 - Enclosed hot-aisles
 - Supplemental 280-tons of cooling from CRAC units
- Observations:
 - Space less an issue than power
 - Cooling > 25kW per rack difficult
 - Power distribution a challenge, more than 1200 circuits

External Power and Cooling Infrastructure

Ranger Features

- AMD Processors:
 - HPC Features → 4 FLOPS/CP
 - 4 Sockets on a board
 - 4 Cores per socket
 - HyperTransport (Direct Connect between sockets)
 - 2.3 GHz core
 - Any idea what the peak floating-point performance of a node is?
 2.3 GHz * 4 Flops/CP * 16 cores = 147.2 GFlops Peak Performance
 - Any idea how much an application can sustain?
 - Can sustain over 80% of peak with DGEMM (matrix-matrix multiply)
- NUMA Node Architecture (16 cores per node, think hybrid)
- 2-tier InfiniBand (NEM "Magnum") Switch System
- · Multiple Lustre (Parallel) File Systems

Other Important Features

- AMD Quad-core (K10, code name Barcelona)
- · Instruction fetch bandwidth now 32 bytes/cycle
- 2MB L3 cache on-die; 4 x 512KB L2 caches; 64KB L1 Instruction & Data caches.
- SSE units are now 128-bit wide --> single-cycle throughput; improved ALU and FPU throughput
- Larger branch prediction tables, higher accuracies
- Dedicated stack engine to pull stack-related ESP updates out of the instruction stream

Ranger Disk Subsystem - Lustre

- Disk system (OSS) is based on Sun x4500 "Thumper"
 - Each server has 48 SATA II 500 GB drives (24TB total) running internal software RAID
 - Dual Socket/Dual-Core Opterons @ 2.6 GHz
 - 72 Servers Total: 1.7 PB raw storage (that's 288 cores just to drive the file systems)
- Metadata Servers (MDS) based on Sun Fire x4600s
- MDS is Fibre-channel connected to 9TB Flexline Storage
- · Target Performance
 - Aggregate bandwidth: 40 GB/sec

Design:
Top loading Disks
Front to rear airflow
Redundant fans
Passive Backplane
No wires in box

Reliability/Availability
Enterprise class SATA disks
1M hours MTBF
RAID 0, 1, 5, 10
Redundant Power
Hot-swap FRUs

Lonestar Related References

- www.tomshardware.com/
- www.topspin.com
- http://developer.intel.com/design/pentium4/ manuals/index2.htm
- http://www.tacc.utexas.edu/services/userguides/lonestar/

Ranger Related References

Guides: www.tacc.utexas.edu/services/userguides/

Forums:

AMD: http://forums.amd.com/devforum

PGI: http://www.pgroup.com/userforum/index.php

Developers

AMD: http://developer.amd.com/home.jsp

AMD Reading: http://developer.amd.com/rec_reading.jsp

